Beitrag zur Bestimmung des Makroporenradius poröser Systeme

VON WILHELM GREBER

Mit 5 Abbildungen

Inhaltsübersicht

In der Industrie des Braunkohlenschwelteeres spielen poröse Systeme sowohl bei der mechanischen Aufarbeitung des Teeres als auch bei seiner Hydrierung an festen Kontakten eine wichtige Rolle. Insbesondere hat sich die Kenntnis über das Makroporensystem und dessen mittleren Radius bei Filterkuchen des Braunkohlenschwelteeres und bei Hydrierkatalysatoren zur Deutung verfahrenstechnischer Fragen als sehr brauchbar erwiesen.

Vorliegende Arbeit bringt einen Beitrag zur Bestimmung des Makroporenradius aus Diffusionsmessungen, der sich aus Serienuntersuchungen genannter poröser Systeme ergeben hat.

1. Einleitung

Bis vor kurzer Zeit noch war die Wichtigkeit der Beschreibung poröser Systeme für die Industrie des Braunkohlenschwelteeres nicht geläufig, obwohl 2 wesentliche Verfahren, nämlich die mechanische Aufarbeitung von Schwelteeren in der Filterpresse und die Hydrierung des Teeres an festen Kontakten ohne Kenntnis der jeweiligen Porensysteme keine verfahrenstechnischen Aussagen zulassen. Sowohl der Filterkuchen als auch der Hochdruckkontakt entsteht aus einem Haufwerk, welches beim Filterkuchen durch die mikroskopische Staubanalyse charakterisiert werden kann, beim Hochdruckkontakt durch die Siebanalyse des Mahlgutes und deren Darstellung im RRB-Diagramm. Zwischen dem Haufwerk und dem daraus bei den verschiedenen Verfahrensbedingungen hergestellten porösen Körpern bestehen für das Makroporensystem Zusammenhänge, deren Kenntnis im speziellen Fall der mechanischen Aufarbeitung des Teeres und der Herstellung von Trägersubstanzen für Kontakte neue Anregung geben werden.

Die experimentellen Untersuchungen, um poröse Systeme nach Volumenanteilen der Festsubstanz und der Porensubstanz bestimmen zu können, weiterhin die Aufteilung nach Mikro- und Makroporenvolumen, sind in der einschlägigen Literatur beschrieben¹). Auch die Bestimmung des Makroporenradius durch Diffusionsmessung ist bekannt und vielfach angewandt worden. Wenn hier auf die Berechnung des mittleren Porenradius nach Diffusionsmessungen näher eingegangen wird, so deshalb, weil bei der Berechnung von \bar{r} Unstimmigkeiten auftraten, die einer Diskussion bedürfen.

2. Die Gleichungen zur Berechnung von r

H. ADMUZI²) hat aus der Überlegung heraus, daß eine Strömung durch ein Porensystem aus laminarer und molekularer Strömung zusammengesetzt ist, eine Methode entwickelt, nach der der mittlere Porenradius berechnet werden kann. Die Methode wurde dann zum Teil in abgeänderter Form angewandt, um u. a. Fischerkontakte³), Nickelpulver und Glasfritten⁴), Papierfilter⁵), Hochdruckkontakte⁶) und Filterkuchen von Braunkohlenschwelteeren⁷) zu untersuchen.

Zur Meßmethodik ist zu sagen, daß zwischen 2 Glaskolben der zu untersuchende poröse Körper eingekittet ist, so daß, wenn in beiden Kolben verschiedene Drucke herrschen, der Druckausgleich über das Porensystem des zu untersuchenden Körpers vor sich geht. Die zeitliche Abnahme der Druckdifferenz zwischen den beiden Kolben wird durch ein Differenzmanometer angezeigt. Aus der zeitlichen Abnahme der Druckdifferenz in den beiden Kolben und dem Volumen der Meßkolben läßt sich die Gesamtströmung, bezogen auf die Einheit der Druckdifferenz, durch die Beziehung:

$$\frac{\dot{\mathbf{n}}}{\Delta \mathbf{p}} = \frac{\mathbf{V}_1 \cdot \mathbf{V}_2}{\mathbf{V}_1 + \mathbf{V}_2} \cdot \frac{1}{\mathbf{R} \,\mathrm{T}} \cdot \frac{1}{\Delta \mathbf{p}} \cdot \frac{\mathrm{d}(\Delta \mathbf{p})}{\mathrm{d} \mathbf{t}} \tag{1}$$

errechnen.

Trägt man die experimentell gefundenen $\Delta p(t)$ -Werte in der Form ln $\Delta p(t)$ gegen die Zeit auf, so erhält man gerade Linien, deren Richtungsfaktor tg α nach Gl. (1) als Relativzahl für die Gesamtströmung $\frac{i}{\Delta p}$ zu verwerten ist.

- ⁵) W. VOLLMER, Chem. Ing. Techn. 26, 90 (1954).
- ⁶) W. GREBER, J. prakt. Chem. 4. Reihe 1, 98 (1954).
- ⁷) W. GREBER, Freiberger Forschungshefte A 36, 110, Chem. Techn. 7, 530 (1955).

¹) K. E. ZIMENS, Kennzeichnung, Herstellung und Eigenschaften poröser Systeme. Handbuch der Katalyse IV. Bd. (1943) Wien, herausgegeben von G. M. SCHWAB.

²) H. ADMUZI, Bull. chem. Soc. Japan 12, 304 (1937). Ausführlich referiert von G. LOCHMANN, Angew. Chem. 53, 505 (1940).

³) W. BRÖTZ und H. SPENGLER, Brennstoffchemie **31**, 97 (1950).

⁴) E. WICKE und W. VOLLMER, Chem. Engng. Sci. 6, 282 (1952).

Die Gesamtströmung zwischen den beiden Kolben setzt sich aus laminarer und molekularer Strömung zusammen.

Für die laminare Strömung gilt die Gesetzmäßigkeit nach HAGEN und POISEUILLE:

$$\frac{\dot{\mathbf{n}}_{\mathbf{P}}}{\Delta \mathbf{p}} = \frac{\pi \mathbf{r}^4}{8 \eta \mathbf{l}} \cdot \frac{\mathbf{N}}{\mathbf{RT}} \cdot \mathbf{\overline{p}} \text{ mol/sec} \cdot \Delta \mathbf{p}$$
(2)

für die molekulare, KNUDSENsche Strömung:

$$\frac{\dot{\mathbf{n}}_{\mathbf{K}}}{\Delta \mathbf{p}} = \frac{4}{3} \sqrt{2\pi} \cdot \frac{\mathbf{r}^3 \cdot \mathbf{N}}{2\sqrt{\mathbf{M} \mathbf{R} \mathbf{T}}} \quad \text{mol/sec} \cdot \Delta \mathbf{p}$$
(3)

und da die mittlere Molekulargeschwindigkeit

$$\overline{w} = 2 \sqrt{\frac{2 R T}{M}}$$

beträgt, läßt sich Gl. (3) auch schreiben:

$$\frac{\dot{\mathbf{n}}_{\mathbf{K}}}{\Delta \mathbf{p}} = \frac{2}{3} \cdot \overline{\mathbf{w}} \cdot \frac{\pi \cdot \mathbf{N} \, \mathbf{r}^3}{1} \cdot \frac{1}{\mathbf{R} \, \overline{\mathbf{T}}} \, \text{mol/sec} \cdot \Delta \mathbf{p}. \tag{4}$$

Dividiert man die Gl. (2) durch Gl. (4), so erhält man nach r aufgelöst:

$$\ddot{\mathbf{r}} = \frac{16}{3} \cdot \eta \cdot \overline{\mathbf{w}} \cdot \frac{1}{p} \cdot \frac{\dot{\mathbf{n}}_P}{\dot{\mathbf{n}}_K}.$$
(5)

Aus Gl. (5) läßt sich der mittlere Porenradius \bar{r} berechnen, wenn bei einem bestimmten mittleren Druck \bar{p} , der sich aus dem arithmetischen Mittel der Drucke in den beiden Meßkolben ergibt, die Verhältniszahl der beiden Strömungsarten bekannt ist.

Aus dem Gesamtverlauf der Strömung läßt sich aber diese Verhältniszahl ermitteln.

Auf Abb. 1 ist eine Strömungsgerade gezeichnet. Auf der Ordinate ist die Gesamtströmung $\frac{\dot{n}}{\Delta p}$ als tg α -Wert vermerkt, auf der Abszisse die mittleren Drucke in Torr.

Streng genommen handelt es sich nicht um eine Gerade, denn bei kleineren Drucken, bei denen die mittlere freie Weglänge der Gasmoleküle etwa 3 r beträgt, tritt ein Minimum des Durchsatzes ein, der mit höheren Drucken wieder etwas ansteigt⁸).

Wir haben aus sehr zahlreichen Untersuchungen festgestellt, daß es genügt, wenn man eine Strömungsgerade zeichnet und hieraus die Anteiligkeit der KNUDSENSchen Strömung graphisch entnimmt.

Unsere weiteren Untersuchungen sind daher auch auf Strömungsgeraden bezogen.

Um Zahlenwerte für den mittleren Porenradius zu erhalten, ist es gleichgültig in welchem Maßstab die tg α -Werte, also die Gesamtströmung,

⁸⁾ M. KNUDSEN, Ann. Physik 28, 75 (1909); 35, 389 (1911).

und die \bar{p} -Werte, die mittleren Drucke, aufgetragen sind. In Abb. 1 besitzt die Längeneinheit der Ordinate einen tg α -Wert von 0,2; die der Abszisse einen \bar{p} -Wert von 50 Torr. Man entnimmt der Abb. 1, daß beispielsweise bei einem Gesamtdruck von 600 Torr eine Gesamtströmung herrscht, die durch den tg α -Wert von 2,0 fixiert ist. Die Strömungsgerade beginnt bei tg $\alpha = 0,34$. Die Verhältniszahl $\frac{\dot{n}_{P}}{\dot{n}_{K}}$ für $\bar{p} = 600$ Torr ist demnach:

Für laufende Untersuchungen ist es zweckmäßig Gl. (5) so zu vereinfachen, daß man alle konstanten Werte zu einem Zahlenfaktor zusammenfaßt. Nimmt man als Meßgas N_2 bei einer Temperatur von 20°C und wird der Druck im absoluten Maßsystem ausgedrückt, -1 Torr = $1,333 \cdot 10^3$ dyn/cm² - so läßt sich Gl. (5) schreiben:

$$\overline{\mathbf{r}} = 3,324 \cdot 10^{-2} \cdot \frac{1}{p} \cdot \frac{\dot{\mathbf{n}}_{P}}{\dot{\mathbf{n}}_{K}} \,\mathrm{cm.} \tag{6}$$

In dieser Gleichung wird p in Torr gemessen und \dot{n}_{p} bzw. n_{K} in Relativzahlen als tg α -Werte.

Für $\overline{\mathbf{p}} = 600$ Torr erhält man dann für Abb. 1:

$$\mathbf{r} = 3,324 \cdot 10^{-2} \cdot \frac{1}{600} \cdot \frac{2,0}{0,34} \,\mathrm{cm}$$
$$\mathbf{\bar{r}} = 3,25 \cdot 10^{-4} \,\mathrm{cm}.$$

Die Berechnung des mittleren Porenradius nach Gl. (6) ist aber von dem gewählten Gesamtdruck abhängig, und zwar erhält man bei größeren p-Werten kleinere Werte für \bar{r} .

So erhält man z. B. bei einem \overline{p} -Wert von 300 Torr für Gl. (6):

$$\bar{\mathbf{r}} = 3,324 \cdot 10^{-2} \cdot \frac{1}{300} \cdot \frac{1,16}{0,34} \,\mathrm{cm}$$

 $\mathbf{r} = 3,77 \cdot 10^{-4} \,\mathrm{cm}.$

Die Strömungsgeraden lassen sich durch die lineare Funktion

$$\dot{\mathbf{n}} = \mathbf{m} \mathbf{p} + \dot{\mathbf{n}}_0 \tag{7}$$

beschreiben, wenn m
 der Richtungsfaktor der Strömungsgeraden und \dot{n}_0 die Strömung bei
 $p\to 0$ bedeutet.

Gl. (7) läßt sich umformen:

$$\frac{\mathbf{n}}{\mathbf{n}_0} = \frac{\mathbf{m}}{\mathbf{n}_0} \mathbf{p} + 1$$
$$\frac{\mathbf{n}}{\mathbf{n}_0} \cdot \frac{1}{\mathbf{p}} = \frac{\mathbf{m}}{\mathbf{n}_0} + \frac{1}{\mathbf{p}}.$$
(8)

Der Faktor $\frac{1}{p} \cdot \frac{\dot{n}}{n_0}$, der bei einem bestimmten p-Wert besser durch $\frac{1}{p} \cdot \frac{\dot{n}_p}{\dot{n}_0}$ bezeichnet wird, kann niemals eine Konstante werden, da auf der rechten Seite der Gl. (8) noch der Ausdruck $\frac{1}{p}$ steht, somit wird r auch nicht für alle Drucke konstant.

In Tabelle 1 sind die nach Gl. (6) berechneten r-Werte aufgeführt, die sich somit bei verschiedenen Gesamtdrucken ergeben.

Die Gl. (6) ist durch Division beider Strömungsarten und eliminieren nach r entstanden. Dies ist mathematisch gerechtfertigt, die Gl. (6) weist jedoch physikalisch Mängel auf, da der Porenradius vom

Tabelle 1 Berechnung von r nach Gl. (6) bei verschiedenen Gesamtdrucken nach Abb. 1

p Torr	100	300	600	1000
\mathbf{r} in μ	6,0	3,77	3,22	3,00

betrachteten mittleren Gesamtdruck abhängig ist. Bei größeren rkönnen Werten diese Abweichungen vernachlässigt werden, auch bei Untersuchungen, wo es Relativzahlen auf an-

kommt. Bei kleineren Porenradien aber, wie sie z. B. bei der G 5-Fritte vorliegen, treten Differenzen mit anderen Untersuchungsmethoden auf, so z. B. der Blasendruckmethode. Die Berechnung des mittleren Porenradius wird aber unabhängig von den einzelnen Gesamtdrucken, wenn man über Gl. (7) durch Einsetzen der beiden Strömungsarten den \bar{r} - Wert eliminiert. Gl. (7) läßt sich unter Berücksichtigung der beiden Gln. (2) und (4) schreiben:

$$\dot{\mathbf{n}} = \frac{\pi \, \mathbf{r}^4}{8 \, \eta} \cdot \frac{\mathbf{N}}{\mathbf{l}} \cdot \frac{1}{\mathbf{RT}} \cdot \bar{\mathbf{p}} + \frac{2}{3} \, \overline{\mathbf{w}} \cdot \frac{\pi \, \mathbf{N} \, \mathbf{r}^3}{\mathbf{l}} \cdot \frac{1}{\mathbf{RT}} \,. \tag{9}$$

Dividiert man Gl. (9) durch den Ausdruck $\frac{2}{3}$ w $\frac{\pi N r^3}{1 R T}$, so erhält man, wenn dieser Ausdruck mit \dot{n}_0 bezeichnet werden soll:

$$\frac{\dot{\mathbf{n}}}{\dot{\mathbf{n}}_{0}} = \frac{\pi \,\mathbf{r}^{4} \cdot \mathbf{N}}{8 \,\eta \cdot \mathbf{l} \cdot \mathbf{R} \,\mathbf{T}} \cdot \mathbf{p} \frac{3 \,\mathbf{l} \,\mathbf{R} \,\mathbf{T}}{2 \,\overline{\mathbf{w}} \,\pi \,\mathbf{N} \,\mathbf{r}^{3}} + 1;$$
$$\frac{\dot{\mathbf{n}}}{\dot{\mathbf{n}}_{0}} = \frac{3}{16 \,\overline{\mathbf{w}} \cdot \eta} \cdot \mathbf{r} \,\overline{\mathbf{p}} + 1$$

und nach \bar{r} aufgelöst:

$$\bar{\mathbf{r}} = \frac{16}{3} \cdot \eta \cdot \overline{\mathbf{w}} \cdot \frac{1}{p} \left(\frac{\dot{\mathbf{n}}}{\dot{\mathbf{h}}_0} - 1 \right). \tag{10}$$

Der Faktor $\frac{1}{p}\left(\frac{\dot{n}}{\dot{n}_0}-1\right)$ in Gleichung (10) ist aber für eine Strömungsgerade konstant und unabhängig von \overline{p} :

Nach Gleichung (7) ist:

$$\dot{n} = m p + n_0$$

Setzt man diesen \dot{n} -Wert in den Faktorenausdruck $\frac{1}{p} \left(\frac{\dot{n}}{\dot{n}_0} - 1 \right)$ der Gleichung (10) ein, so erhält man:

$$\frac{1}{p} \left(\frac{m p + \dot{n}_0}{\dot{n}_0} - 1 \right)$$

$$\frac{1}{p} \left(\frac{m p + \dot{n}_0 - \dot{n}_0}{\dot{n}_0} \right)$$

$$\frac{1}{p} \cdot \frac{m p}{\dot{n}_0}$$

$$\frac{m}{\dot{n}_0} \cdot (11)$$

Gleichung (10) läßt sich nunmehr schreiben:

$$\overline{\mathbf{r}} = \frac{16}{3} \,\eta \cdot \overline{\mathbf{w}} \cdot \frac{\mathbf{m}}{\mathbf{n}_0} \,. \tag{12}$$

r ist in Gleichung (12) nur noch abhängig vom Gesamtverlauf der Strömungsgeraden, also von m und \dot{n}_0 , ein jeweiliger mittlerer Gesamtdruck \bar{p} wird in Gleichung (12) nicht mehr berücksichtigt.

Der Richtungsfaktor m läßt sich aus der Strömungsgeraden durch 2 zugehörige \overline{p} - und n-Werte ermitteln, so daß man schreiben kann:

$$\overline{\mathbf{r}} = \frac{16}{3} \eta \cdot \overline{\mathbf{w}} \cdot \frac{\dot{\mathbf{n}}_1 - \dot{\mathbf{n}}_2}{\dot{\mathbf{p}}_1 - \dot{\mathbf{p}}_2} \cdot \frac{1}{\dot{\mathbf{n}}_0}$$

bzw.

$$\ddot{\mathbf{r}} = 3,324 \cdot 10^{-2} \cdot \frac{\dot{\mathbf{n}}_1 - \dot{\mathbf{n}}_2}{\dot{\mathbf{p}}_1 - \mathbf{p}_2} \cdot \frac{1}{\dot{\mathbf{n}}_0} \,\mathrm{cm.}$$
 (13)

In Gleichung (13) werden die Strömungswerte \dot{n}_1 und \dot{n}_2 wieder als tg α -Werte eingesetzt, die Drucke \overline{p}_1 und \overline{p}_2 in Torr.

Bezeichnet man die Konstante $3,324 \cdot 10^{-2}$ mit a, so läßt sich Gleichung (6) und (13) schreiben:

 $r_1 > r_2$.

$$\mathbf{r_1} = \mathbf{a} \cdot \frac{1}{\dot{\mathbf{p}}} \cdot \frac{\dot{\mathbf{n}}}{\dot{\mathbf{n}}_0} \tag{6a}$$

 $\mathbf{r}_2 = \mathbf{a} \cdot \frac{\mathbf{m}}{\mathbf{\dot{n}_0}}.\tag{13a}$

Es gilt die Beziehung:

Setzt man in Gleichung (6a) Gleichung (8) ein, so erhält man:

 $r_{1} = a \cdot \left(\frac{m}{\dot{n}_{0}} + \frac{1}{p}\right)$ $r_{1} = a \cdot \frac{m}{\dot{n}_{0}} + \frac{a}{\bar{p}}$ $r_{1} = r_{2} + \frac{a}{\bar{p}}.$ (14)

bzw.

Das Zusatzglied $\frac{a}{\bar{p}}$ ist also lediglich eine Funktion vom Gesamtdruck \bar{p} ,

Abb. 2. r_1 -Werte in Abhängigkeit von r_2

da $a = \frac{16}{3} \cdot \eta \cdot w \cdot \frac{1}{1,333 \cdot 10^3}$ für alle Messungen konstant ist.

Für $\overline{p} = 600$ Torr errechnet sich z. B.

$$r_{1} = r_{2} + \frac{3,324 \cdot 10^{-2}}{6,0 \cdot 10^{2}} \text{ cm}$$

$$r_{1} = r_{2} + 0,55 \cdot 10^{-4} \text{ cm}.$$
 (15)

Gleichung (15) ist in Abb. 2 dargestellt. Auf der Ordinate sind die r_1 -Werte, auf der Abszisse die r_2 -Werte in μ aufgetragen. Bei einem r_2 -Wert von 1.0 erhält man einen r_1 -Wert von 1,55 μ , bei einem r_2 -Wert von 10,0 μ einen r_1 -Wert von 10.55 μ . Die Differenzen zwischen den beiden Gleichungen (6) und (13) sind nur bei kleinen \tilde{r} -Werten störend. Bei größeren \tilde{r} -Werten fallen die Differenzen innerhalb der Meßgenauigkeit der Methode.

3. Beispiele für die Berechnung der r₁- und r₂-Werte

Es sollen an Beispielen beide Berechnungsarten für \bar{r} erläutert werden. Auf Abb. 3 sind 4 Strömungsgerade gezeichnet. Die Gleichungen der 4 Geraden lauten für das angewandte Koordinatensystem:

Abb. 3. Strömungsgeraden aufgetragen als tg α -Werte gegen den mittleren Druck p

In Tabelle 2 sind die Berechnungen der r_1 -Werte nach Gleichung (6) für die mittleren Drucke $\overline{p} = 100$; 300; 600 und 1000 aufgeführt. In Tabelle 3 sind die Berechnungen der mittleren Porenradien nach Gleichung (13) vermerkt.

In Tabelle 4 sind die Korrekturglieder $\frac{a}{p}$ nach Gleichung (14) für verschiedene Drucke vermerkt.

In Tabelle 5 sind die r_2 -Werte der 4 Strömungsgeraden nach Gleichung (13) und die sich nach Tabelle 4 über die Beziehung $r_1 = r_2 + \frac{a}{\bar{p}}$ ergebenden r_1 -Werte aufgezeichnet. In Klammern stehen die nach Gleichung (6) Tabelle 2 berechneten r_1 -Werte.

Diskussion zu den Rechenbeispielen:

Die Differenzen die sich aus den beiden Gleichungen (6) und (13) ergeben, lassen sich durch die Beziehung

$$r_1=r_2+\frac{a}{p}$$

.60
.60
.60
,
.0
• 10- 3
,0
,80
.0
10 -3
,99
,4
7,0
· 10-2
,65
,80
,0
· 10-2
,6

Tabelle 2 Berechnung der r₁-Werte für die Strömungsgeraden nach Abb. 3 bei verschiedenen mittleren Drucken über Gl. (6)

Erläuterung zu Tafel 2:

Spalte 1: Die mittleren Drucke, bei denen die Berechnung der jeweiligen r₁-Werte durchgeführt wird.

- Spalte 2: Der tg a-Wert für den jeweiligen Druck.
- Spalte 3: Die Verhältniszahl der beiden Strömungsarten.

Spalte 4: Das Produkt aus $\frac{1}{p}$ und der Verhältniszahl der Strömungsarten.

Spalte 5: Nach Gl. (6) berechnete r₁-Werte.

Strömungs- gerade Nr.	1	2	3	4
11 ₆₀₀	0,44	1,16	2,12	3,56
n ₃₀₀	0,32	0,68	1,16	1,88
$\dot{n}_{600} = \dot{n}_{300}$	0,12	0,48	0,96	1,68
$\frac{\dot{n}_{600}-\dot{n}_{300}}{300}$	4,0 · 10-4	1,6 • 10-3	$3,2 \cdot 10^{-2}$	$2,8 \cdot 10^{-2}$
m De	2,0 · 10-3	8,0 · 10-3	1,6 · 10-2	$2,8 \cdot 10^{-2}$
$r_2 in \mu$	0,66	2,66	5,32	9,31

Tabelle 3 Berechnung der r₂-Werte für die einzelnen Strömungsgeraden nach Abb. 3 über Gl. 13

Erläuterung zu Tafel 3:

Spalte 1: Die Nummer der Strömungsgeraden.

Spalte 2: Der tg α -Wert bei dem Druck von 600 Torr der einzelnen Strömungsgeraden. Spalte 3: Der tg α -Wert bei dem Druck von 300 Torr der einzelnen Strömungsgeraden. Spalte 4: Die Differenz der tg α -Werte von Spalte 2 und 3.

Spalte 5: Das Steigungsmaß der Geraden errechnet nach $\frac{\dot{n}_1 - \dot{n}_2}{\bar{p}_1 - \bar{p}_2}$.

Spalte 6: Die Verhältniszahl vom Steigungsmaß m zum no.

Spalte 7: Die nach Gl. (13) errechneten r₂-Werte.

Tabelle 4 Korrekturglieder nach Gl. (14) für verschiedene Drucke

p	100	300	600	1000
$\frac{a}{\overline{p}}$ in μ	3,3	1,11	0,55	0,33

Tabelle 5

r₂-Werte für die Strömungsgeraden nach Abb. 3 sowie die über Tabelle 4 berechneten r₁-Werte

Strömungs- gerade	1	2	3	4
r_2 in μ	0,66	2,66	5,32	9,31
r _ı ber. für				
$\dot{b} = 100 \text{ Torr}$	3,96	5,96	8,62	12,61
	(3,99)	(5,98)	(8,64)	(12,6)
5 = 300 Torr	1,76	3,77	6,43	10,42
	(1,76)	(3,75)	(6,42)	(10,4)
= 600 Torr	1,21	3,21	5,87	9,86
į	(1,21)	(3,22)	(5,88)	(9,9)
$\mathbf{b} = 1000 \mathrm{Torr}$	0,99	2,99	5,65	9,60
	(1,0)	(2,99)	(5,65)	(9,64)

ausgleichen. Bei großen Werten von \bar{r} , mit hohen mittleren Drucken stimmen die nach beiden Gleichungen berechneten r-Werte überein. Da aber andere Meßmethoden, so z. B. die Blasendruckmethode Werte liefert, die denen von r_2 entsprechen, scheint es angebracht zu sein, die aus der Strömungsgeraden nach r_1 berechneten Werte durch das Zusatzglied $\frac{a}{p}$ zum r_2 -Wert zu korrigieren, bzw. Gleichung (13) anzusetzen.

4. Die Meßgenauigkeit der Methode

Die Meßgenauigkeit zur Bestimmung des mittleren Porenradius durch die hier diskutierte Diffusionsmessung wurde an einer G 4-Fritte durchgeführt. Auf Abb. 4 sind die $\ln \Delta p(t)$ -Geraden bei verschiedenen mittleren Drucken für die Meßreihe Nr. 4 aufgetragen. Hieraus läßt sich, wie in Abb. 5 gezeigt wird, eine Strömungsgerade zeichnen. Auf der Ordinate sind die tg α -Werte aus Abb. 4, auf der Abszisse die mittleren Drucke aufgetragen. Aus Abb. 5 sind folgende gemittelten Werte zu entnehmen:

$$\dot{h}_{0} = 0,12; \quad \dot{h}_{100} = 0,25; \quad \dot{h}_{400} = 0,65; \quad \dot{h}_{500} = 079.$$

$$r_{1} \text{ bei } p = 400; \quad 3,324 \cdot 10^{-2} \cdot \frac{0,65}{0,12} \cdot \frac{1}{400}$$

$$r_{1} = 4,49 \cdot 10^{-4}; \quad r_{2} = 3,67 \cdot 10^{-4}$$

$$r_{1} \text{ bei } p = 500; \quad 3,324 \cdot 10^{-2} \cdot \frac{0,79}{0,12} \cdot \frac{1}{500}$$

$$r_{1} = 4,36 \cdot 10^{-4}; \quad r_{2} = 3,70 \cdot 10^{-4}$$

$$r_{2} = 3,324 \cdot 10^{-2} \cdot \frac{0,79}{500} - \frac{0,25}{100} \cdot \frac{1}{0,12}$$

$$r_{2} = 3,74 \cdot 10^{-4}.$$

Abb. 4. ln ⊿p gegen die Zeit für Versuchsreihe Nr. 4 bei der G4-Fritte

9

8

5

10 11 12 13 14 15 16 17 18

19 20 t in Min.

In Tabelle 6 sind die Ergebnisse der 10 Meßreihen vermerkt.

Nach der Gauss schen Fehlerrechnung wird der Fehler der Einzelmessung $\pm 0.13 \,\mu$ für die r_1 -Werte.

Bei einem p-Wert von 2650 Torr wird daher das Zusatzglied $\frac{a}{p}$ so groß wie der Fehler der Einzelmessung. Das bedeutet, daß erst ab einem Gesamtdruck von 2560 Torr Gleichung (6) ohne Zusatzglied zu verwerten ist.

Abb. 5. Strömungsgerade für die 4. Versuchsreihe bei der G4-Fritte

Tabelle 6

Meß-		0	0		
eihe Nr.	1 	2	3	4	0
1	4,46	4,15	3,63	3,49	3,46
2	3,80	3,56	2,97	2,90	2,90
3	3,85	3,64	3,02	2,98	2,96
4	4,49	4,36	3,66	- 3,70	3,74
5	4,28	4,09	3,45	3,43	3,39
6	4,22	4,08	3,39	3,42	3,39
7	4,27	4,09	3,44	3,43	3,39
8	4,28	4,14	3,45	3,48	3,45
9	4,47	4,24	3,64	3,58	3,58
10	4,47	4,45	3,64	3,79	3,77

Mittlere Porenradien einer G 4-Fritte nach Gl. (6) und (13)

Erläuterung zu Tabelle 6:

Spalte 1: Die Porenradien nach Gl. (6) berechnet für $\bar{p} = 400$. Spalte 2: Die Porenradien nach Gl. (6) berechnet für $\bar{p} = 500$. Spalte 3: Die nach Gl. (14) korrigierten r_1 -Werte für $\bar{p} = 400$. Spalte 4: Die nach Gl. (14) korrigierten r_1 -Werte für $\bar{p} = 500$. Spalte 5: Die nach. Gl. (13) berechneten r_2 -Werte.

5. Die Untersuchung Jenaer Glasfritten

Anlaß für vorliegenden Ausführungen waren die Untersuchungen Jenaer Glasfritten, um deren Struktur mit der des Filterkuchens von Braunkohlenschwelteer vergleichen zu können⁹). Über die Porenstruktur Jenaer Glasfritten liegt ein ausgedehntes Schrifttum vor ¹⁰). Die Bestimmung des mittleren Porenradius über Gleichung (6) bzw. (13) kann daher nur als Ergänzung zu den bisherigen Messungen betrachtet werden.

Bei den Glasfritten werden maximale und mittlere Porenradien unterschieden, wobei die Güte einer Fritte dadurch gekennzeichnet ist. daß beide Werte möglichst nahe beieinander liegen¹¹). Das würde z. B. bedeuten, daß bei den Fritten keine Mikroporen vorhanden sein dürfen. Das Herstellungsverfahren der Fritten, die Fritten werden aus Teilchen annähernd gleicher Korngröße durch Zusammensintern hergestellt. ist ja darauf eingestellt. Wir haben nach der Methode der Kapillarkondensation nach KUBELKA¹²) die G3-, G4-, G5-, Fritten untersucht und bei keiner Fritte ein Mikroporenvolumen, d. h. ein Porenvolumen, dessen Radius $> 10^{-5}$ cm betrug, finden können. Das gesamte Porenvolumen liegt als Makroporenvolumen vor. Die Glasfritten haben daher eine ideale Gefügestruktur als Trägersubstanz für Kontakte⁶). Für die Herstellung von Kontakten ist diese Erkenntnis äußerst interessant.

Der maximale Porenradius wird mit Hilfe der Blasendruckmethode bestimmt¹⁰), der mittlere Porenradius durch Beobachtung der Strömungsgeschwindigkeit von Luft oder Wasser durch die Fritten, wobei die von MANEGOLD¹⁰) entwickelte Formel

$$\mathbf{r} = \sqrt{\frac{8 \,\mathbf{D} \cdot \mathbf{d} \cdot \boldsymbol{\eta}}{\mathbf{W}_{\mathbf{e}}}} \tag{16}$$

benutzt wird.

D bedeutet die Filterdurchlässigkeit auf Zeit und Flächeneinheit bezogen, d die Filterdicke, η die Viskosität des durchströmenden Mediums und W_o das effektive Hohlraumvolumen, welches aus dem experimentell bestimmbaren Hohlraumvolumen — Gewichtsunterschied zwischen dem wasserbehandelten und trockenen Filter — errechnet wird. Das Hohlraumvolumen läßt sich auch aus der Dichte des Filtermaterials berechnen, wenn in dem Porensystem keine unzugänglichen Blasen vorliegen. Äußeres Kornvolumen und Dichte sind experimentell leichter und genauer

⁹⁾ W. GREBER und O. GLIENKE, erscheint im 3. Heft 1956 der Chem. Techn.

¹⁰) H. KNÖLL, Ergebnisse der Hygiene Bakteriologie, Immunitätsforschung und experimentellen Therapie 24, 266 (1941).

¹¹) P. H. PRAUSNITZ, Kolloid-Z. 104, 246 (1943).

¹²) P. KUBELKA, Kolloid-Z. 55, 129 (1931).

zu ermitteln als Gewichtsunterschiede zwischen feuchtem und trockenem Filter, gleichgültig, ob man als Meßflüssigkeit Wasser oder Benzol nimmt.

In Tabelle 7 sind die von uns gemessenen Daten der einzelnen Volumina angegeben.

In Tabelle 8 sind die von MANEGOLD¹³) und WITZMANN¹⁴) angegebenen W-Werteaufgeführt.

Die Werte der Tabelle 7 stimmen mit denen der Tabelle 8 gut überein.

Nach den bisherigen Methoden zur Bestimmung des mittleren Porenradius, ob aus der Wasserdurchlässigkeit oder der Gasdurchlässigkeit, mußten die W-Werte, weiter die Dicke des Filters und die Durchlässigkeit bezogen auf Zeit und Flächeninhalt bekannt sein. Demgegenüber haben die Gleichungen (6) und (13) und auch die Methodik mancherlei Vorteile.

Wie weit sie sich zur Ermittlung des mittleren Porenradius mit den Werten anderer Autoren deckt, zeigt Tabelle 9 und 10.

Tabelle 7 Experimentelle Ergebnisse des Porensystems verschiedener Glasfritten

Fritten- bezeich- nung	G 3	G 4	G 5
V _K	0,671	0,600	0,638
V ₀	0,431	0,439	0,450
V _z	0,240	0,161	0,180
W	0,358	0,268	0,295

Erläuterung zu Tabelle 7:

- Spalte 1: V_K = Volumen des äußeren Korns in cm³/1 g Substanz, der reziproke Wert wird als Scheindichte bezeichnet.
- Spalte 2: $V_0 = Volumen$ der Festsubstanz, der reziproke Wert ist die wahre Dichte.
- Spalte 3: $V_z = Volumen$ der zugänglichen. Poren.
- Spalte 4: W = Hohlraumvolumen. Berechnet aus $\frac{V_z}{V_w}$.

Diskussion zu den Tabellen 9 und 10

Die von uns nach der Diffusionsmethode über Gleichung (6) und (13) ermittelten Porenradien stimmen mit den früheren Messungen anderer

Autoren gut überein. Die von uns in Serienuntersuchungen gemessenen mittleren Porenradien von Hochdruckkontakten und Filterkuchen von Braunkohlenschwelteer erhal-

Tabelle 8						
Hohlraumve	olumen	der	versch	iiedenen		
Glasfritten n	ach Ma	NEGOL	. D und	Witzmann		

Fritten- sorte	G 3	G 4	G 5
W nach	0,305	0,236	0,301
MANAGOLD	0,246	0,261	0,284
	0,219	0,261	0,278
W nach			
WITZMANN	0,231	0,273	

¹³) E. MANEGOLD, R. HOFMANN und K. Solf, Kolloid-Z. 56, 267 (1931).

¹⁴) H. WITZMANN, Chem. Fabrik 12, 345 (1939).

ten somit durch die Daten der Tabellen 9 und 10 eine weitere Bestätigung.

Fritte	г ₁	$r_1 - \frac{a}{p}$	r ₂	Katalogwerte
	11,2	10,76	10,8	
	7,2	6,76	6,75	1
G 3	10,2	9,76	9,9	7,5-20,0
	11,3	10,86	11,1	
	3,1	2,66	3,04	
	3,2	2,76	2,85	
G 4	2,9	2,46	2,37	2,5 7,5
	3,9	3,46	3,50	
	3,8	3,36	3,42	
	1,2	0,76	0,73	Maximaler Porenradius
				nach BECHHOLD ¹⁰)
	1,1	0,66	0,62	0,82
G 5	0,96	0,52	0,57	0,65
	1,0	0,56	0,57	0,72
	1,09	0,67	0,68	0,72

Tabelle 9 Über Gl. (6) und (13) berechnete Werte für die mittleren Porenradien in μ

Tabelle 10

Mittlere Porenradien in μ verschiedener Glasfritten nach MANEGOLD, PRAUSNITZ, WITZMANN und KNÖLL

Wasserdurch- lässigkeit MANEGOLD ¹³)	Gasdurch- lässigkeit MANEGOLD ¹³)	Luftblasen- methode PRAUSNITZ ¹⁵)	Wasser- durchlässig- keit Knöll ¹⁰)	Luftdurch- lässigkeit WITZMANN ¹⁴)	Fritten- sorte
$\begin{array}{c} G_3 (1) \ 6,25 \\ G_3 (1) \ 6,49 \\ G_3 (1) \ 7,50 \end{array}$	G ₃ (1) 12,9 N ₂ 11,7 G ₃ (1) 11,7 N ₂	15		8,61	G 3
$\begin{array}{c} G_4 \ (1) \ 2,48 \\ G_4 \ (2) \ 2,79 \\ G_4 \ (3) \ 2,80 \end{array}$	G4 (1) 3,06 . Luft	4,0	1,79 Nr. 31 2,30 Nr. 33 1,66 Nr. 27 1,58 Nr. 21	2,17	G 4
$G_5 (1) 0.81$ $G_5 (2) 0.97$	G ₅ (1) 1,21 Luft · No 1.08		0,46 Nr. 3 0,42 Nr. 4		
G ₅ (3) 0,81	G ₅ (2) 1,20 Luft	0,75	0,43 Nr. 5 0,47 Nr. 6		G 5

¹³) P. H. PRAUSNITZ, Kolloid-Z. 50, 173 (1930).

6. Zusammenfassung

Es werden über die Gesetzmäßigkeiten der laminaren und molekularen Strömung die Möglichkeiten besprochen, um aus den Strömungsgeraden den mittleren Porenradius zu berechnen.

Die Unstimmigkeiten, die sich bei der Berechnung über die Strömungsgeraden für den mittleren Porenradius ergeben, werden diskutiert und durch ein Zusatzglied ausgeglichen.

An Hand von Beispielen werden Berechnungen von mittleren Porenradien eingehend besprochen.

Eigene Messungen mittlerer Porenradien Jenaer Glasfritten werden mit Literaturwerten verglichen und die beschriebene Diffusionsmessung als brauchbare Untersuchungsmethode zur Ermittlung des mittleren Porenradius herausgestellt.

Zeitz, VEB Hydrierwerk.

Bei der Redaktion eingegangen am 21. Oktober 1955.